Monday, August 31, 2020

MATRIKS, MACAM-MACAM MATRIKS, DAN OPERASI MATRIKS

Nama: Kania Az Zahra
Kelas: XI IPS 2

Pengertian Matriks
Matriks adalah susunan bilangan (elemen) yang disusun berdasarkan baris dan kolom sehingga berbentuk persegi panjang. Baris dalam matriks merupakan susunan dari bilangan-bilangan yang mendatar. Sedangkan kolom dalam matriks merupakan susunan dari bilangan-bilangan yang tegak. 
 
Ordo Matriks
banyaknya baris dan kolom dalam matriks disebut dengan ordo. Banyaknya baris dan kolom dalam matriks akan menentukan ukuran dari matriks, hal ini disebut dengan ordo matriks.  
 
Macam-Macam Matriks
1. Matriks Baris dan Matriks Kolom
Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja. Contoh:

A = (1  4) atau B = (3  7  9) adalah matriks baris

\begin{pmatrix} 146 \\ 275 \\ 528 \end{pmatrix} atau D = \begin{pmatrix} p \\ q \end{pmatrix} adalah matriks kolom

 

2. Matriks Persegi 
Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.
Contoh:

A = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix} adalah matriks persegi berordo 3, atau

B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} adalah matriks persegi berordo 2.

3. Matriks Segitiga Atas dan Seigitiga Bawah
Matriks persegi A yang memiliki elemen matriks a_{ij} = 0 untuk i > j atau elemen-elemen matriks dibawah diagonal utama bernilai 0 disebut matriks segitiga atas. Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i < j atau elemen-elemen matriks diatas diagonal utama bernilai 0 disebut matriks segitiga bawah.
Contoh:

A = \begin{pmatrix} 1 & 6 & 4 \\ 0 & 3 & 7 \\ 0 & 0 & 4 \end{pmatrix} adalah matriks segitiga atas,

B = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 3 & 0 \\ 4 & 6 & 4 \end{pmatrix} adalah matriks segitiga bawah.

4. Matriks Diagonal  
Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i \neq j atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal. 
Contoh:

A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}

5. Matriks Skalar 
Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar. 
Contoh:

A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} atau B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}

6. Matriks Identitas
Matriks identitas adalah matriks skalar yang bilangannya semua 1
Contoh :
    A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
 
7. Matriks Simetris
Matriks persegi A yang memiliki elemen matiks baris ke-I sama dengan elemen matriks kolom ke-j untuk i = j disebut simetris. Atau, dapat dikatakan elemen a_{ij} sama dengan elemen a_{ji}
Contoh:

\begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 4 & 5 & 7 \end{pmatrix}

Dapat dilihat bahwa elemen baris ke-1 sama dengan kolom ke-1, baris ke-2 sama dengan kolom ke-2, dan baris ke-3 sama dengan kolom ke-3.
8. Transpose Matriks
Transpose matriks merupakan perubahan baris menjadi kolom dan sebaliknya. Transpose matriks dari A_{m x n} adalah sebuah matriks dengan ukuran (n x m) dan bernotasi AT. Jika matriks A ditanspose, maka baris 1 menjadi kolom 1, baris 2 menjadi kolom 2, dan begitu seterusnya.
Contoh:

\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} ditranspose menjadi \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.

Sifat dari transpose matriks: (A^T)^T = A.

Operasi Matriks
1. Penjumlahan Matriks
Misalkan terdapat dua buah matriks, yaitu matriks A dan matriks B. Jika matriks C adalah matriks penjumlahan dari A dengan B, maka matriks C dapat diperoleh dengan menjumlahkan setiap elemen pada matriks A yang seletak dengan setiap elemen pada matriks B. Oleh karena itu, syarat agar dua atau lebih matriks dapat dijumlahkan adalah harus memiliki ordo yang sama. 
Contoh:
operasi aljabar matriks

Hasil dari A + B dapat diperoleh dengan menjumlahkan setiap elemen matriks A yang seposisi dengan setiap elemen matriks B.

operasi aljabar matriks2. Pengurangan Matriks 
Misalkan terdapat dua buah matriks, yaitu matriks A dan matriks B. Jika matriks C adalah matriks pengurangan dari A dengan B, maka matriks C dapat diperoleh dengan mengurangkan setiap elemen pada matriks A yang seletak dengan setiap elemen pada matriks B.  A - B = A + (-B) 
Contoh:
operasi aljabar matriks

Hasil dari A - B dapat diperoleh dengan mengurangkan setiap elemen matriks A yang seposisi dengan setiap elemen matriks B. 

operasi aljabar matriks

3. Perkalian Matriks
Contoh:
matriks 4 

Jadi, a11 akan dikalikan dengan b11, a12 dikalikan dengan b21, a21 dikalikan dengan b11, dan a22 dikalikan dengan b21.

operasi aljabar matriks

Lalu, jumlahkan hasil kali elemen-elemennya menjadi seperti ini:

operasi aljabar matriks

Sehingga, hasil kali matriks A dengan matriks B adalah sebagai berikut:

operasi aljabar matriks

Sumber:
https://www.studiobelajar.com/matriks-dasar/
https://blog.ruangguru.com/matematika-kelas-11-operasi-aljabar-pada-matriks-penjumlahan-pengurangan-dan-perkalian

 



 
 

Monday, August 24, 2020

CONTOH SOAL CERITA NILAI OPTIMUM

Nama: Kania Az Zahra
Kelas: XI IPS 2

1. Dewi akan membuat 2 model pakaian jadi. model I memerlukan tidak lebih dari 1m kain polos dan 1,5m kain bergaris. model II memerlukan tidak lebih dari 2m kain polos dan 0,5m kain bergaris. bila pakaian tersebut dijual, setiap model I memperoleh untung tidak kurang dari Rp 15.000 dan model II memperoleh untung tidak kurang dari Rp 10.000. laba yang diperoleh Dewi adalah sebanyak?

Ditanya:
buat pertidaksamaannya dulu baru table setelah itu daerah kotor dan daerah bersihnya, himpunan penyelesaian, titik pojok untuk menentukan nilai optimalnya dan laba dewi dari nilai tertinggi yang diperoleh

Pembahasan:
diketahui:
model kain I: kain polos 1m dan kain bergaris 1,5m 
model kain II: kain polos 2m dan kain bergaris 0,5m 
persediaan: 
- kain polos 20m
- kain bergaris 10m
laba:
- model I tak kurang dari Rp 15.000
- model II tak kurang dari Rp 10.000
ditanya: laba yang diperoleh
jawab:
model I = x
model II = y
 

 

Kain polos

Kain bergaris

Model  1 (x)

1x

1,5x

Model 2 (y)

2y

0,5y

persediaan

20

10

 
persamaan:
1x + 2y = 20
1,5x + 0,5y = 10
 
penyelesaian menggunakan metode matematika yaitu eliminasi dan subtitusi

 

setelah persamaan diselesaikan, masukkan hasil persamaan kedalam rumus untuk mencari laba

jadi, laba yang diperoleh adalah: Rp 140.000

daerah bersih dan kotor: 

2. Ling ling membeli 240 ton beras untuk dijual lagi. Ia menyewa dua jenis truk untuk mengangkut beras tersebut. Truk jenis A memiliki kapasitas 6 ton dan truk jenis B memiliki kapasitas 4 ton. Sewa tiap truk jenis A adalah Rp 100.000,00 sekali jalan dan truk jenis B adalah Rp 50.000,00 sekali jalan. Maka Ling ling menyewa truk itu sekurang-kurangnya 48 buah. Berapa banyak jenis truk A dan B yang harus disewa agar biaya yang
dikeluarkan minimum?
 
Tabel Kendala
kendala-kendalanya dapat dituliskan sebagai berikut. 
x + y ≥ 48,
6x + 4y ≥ 240,
x ≥ 0, y ≥ 0, x, y anggota bilangan cacah
Dengan fungsi objektifnya adalah f(x, y) = 100.000x + 50.000y.
Gambarkan daerah penyelesaian dari kendala-kendala di atas.  
Daerah Penyelesaian
Titik pojok dari daerah penyelesaian di atas adalah titik potong garis 6x + 4y = 240 dengan sumbu-y, titik potong garis x + y = 48 dengan sumbu-x, dan titik potong garis-garis x + y = 48 dan 6x + 4y = 240. Titik potong garis 6x + 4y = 240 dengan sumbu-y adalah titik (0, 60). Titik potong garis x + y = 48 dengan sumbu-x adalah titik (48, 0). Sedangkan titik potong garis-garis x + y = 48 dan 6x + 4y = 240 dapat dicari dengan menggunakan cara eliminasi
 Eliminasi
Diperoleh, titik potong garis-garis x + y = 48 dan 6x + 4y = 240 adalah pada titik (24, 24).
Substitusikan koordinat setiap titik pojok itu ke dalam fungsi objektif.
Rev Uji Titik Pojok
 Dari ketiga hasil tersebut, dapat diperoleh bahwa agar biaya yang dikeluarkan minimum, Ling ling harus menyewa 60 truk jenis B dan tidak menyewa truk jenis A.
 
3. Seorang tukang roti mempunyai bahan A,B dan C masing-masing sebanyak 160 kg, 110 kg dan 150 kg.
  • Roti I memerlukan 2 kg bahan A, 1 kg bahan B dan 1 Kg bahan C
  • Roti II memerlukan 1 kg bahan A, 2 kg bahan B dan 3 Kg bahan C
Sebuah roti I dijual dengan harga Rp.30.000 dan sebuah roti II dijual dengan harga Rp.50.000, pendapatan maksimum yang dpat diperoleh tukang roti tersebut adalah…

Misal roti I = x dan roti II = y didapat persamaan sbb:

  • 2x + y ≤ 160 …..(1)
  • x + 2y ≤ 110 …..(2)
  • x + 3y ≤ 150 ….(3)

buat sketsa grafiknya:

soal program linear dan jawaban no 10

Daerah yang diarsir adalah himpunan penyelesaian dari tiga grafik tsb. Didapat 4 titik ekstrim yaitu (0,50), (80,0), titik A dan titik B

perpotongan (1) dan (2)  → titik B

soal program linear dan jawaban no 10-1

4. Untuk mengetahui pendapatan maksimum, maka terlebih dahulu kita menyusun sistem pertidaksamaan dan fungsi tujuan dari soal cerita tersebut. Karena yang ditanya pendapatan maksimum, maka tentu harga jual kue merupakan fungsi tujuan pada soal ini. Untuk menyusun sistem pertidaksamaan, yang perlu kita lakukan adalah menentukan variabel dan koefisiennya.
Bahan yang tersedia:
  • Tepung = 8 kg = 8000 g
  • Gula = 2 kg = 2000 g
Misalkan :
  • kue dadar = x
  • kue apem = y 

Maka jumlah tepung, gula, dan harga jual merupakan koefisien. Agar lebih mudah, kita dapat memasukkan data yang ada pada soal ke dalam bentuk tabel seperti berikut :

soal program linear no 18
Dari tabel di atas dapat disusun sistem pertidaksamaan sebagai berikut :
20x + 50y = 800 → 2x + 5y ≤ 800
10x +5y = 2000 → 2x + y ≤ 400
x ≥ 0 dan y ≥ 0 
dengan fungsi tujuan f(x,y) = 300x + 500y 
Kemudian gambarkan sistem pertidaksamaan yang sudah disusun dalam grafik.
Untuk garis 2x + 5y = 800
x = 0, y = 160 → (0, 160)
y = 0, x = 400 → (400, 0)
Untuk garis 2x + y = 400
x = 0, y = 400 → (0, 400)
y = 0, x = 200 → (200, 0)
soal program linear no 18-1
Titik B merupakan titik potong garis 2x + 5y = 800 dengan garis 2x +
y = 400
2x + y = 400
y = 400 – 2x
Dengan metode substitusi :
2x + 5y = 800
2x + 5(400 – 2x) = 800
2x + 2000 – 10x = 800
-8x = -1200
x = 150
Karena x = 150, maka :
y = 400 – 2x
y = 400 – 2(150)
y = 400 – 300
y = 100
Dengan demikian titik B (150, 100)
Selanjutnya substitusikan titik A, B, dan C ke fungsi tujuan :
A(0, 160) → F(x,y) = 300(0) + 500(160) = 80.000
B(150, 100) → F(x,y) = 300(150) + 500(100) = 95.000
C(200, 0) → F(x,y) = 300(200) + 500(0) = 60.000
Jadi, pendapatan maksimum yang bisa diperoleh pedagang kue itu adalah Rp 95.000,00.

sumber:
  • https://yos3prens.wordpress.com/2012/11/26/program-linear-menentukan-nilai-optimum-suatu-fungsi-objektif-dengan-menggunakan-metode-uji-titik-pojok/
  • https://soalkimia.com/contoh-soal-program-linear/
 

Monday, August 10, 2020

PENYELESAIAN PERTIDAKSAMAAN PROGRAM LINEAR

Nama: Kania Az Zahra (17)

Kelas: XI IPS 2


Gambar daerah bersih atau daerah kotor program linear dari pertidaksamaan 3x + 2y ≤ 12 , 5x + 3y < 19 , x ≥ 0, y ≥ 0 



Monday, August 3, 2020

PROGRAM LINEAR

Nama: Kania Az Zahra (17)
Kelas: XI IPS 2

Program linear adalah suatu metode penentuan nilai optimum dari suatu persoalan linear. Nilai optimum (maksimal atau minimum) diperoleh dari nilai dalam suatu himpunan penyelesaiaan persoalan linear. Di dalam persoalan linear terdapat fungsi linear yang bisa disebut sebagai fungsi objektif. Persyaratan, batasan, dan kendala dalam persoalan linear merupakan sistem pertidaksamaan linear.

Model Matematika Program Linear
Model matematika merupakan pernyataan yang menggunakan peubah dan notasi matematika.

Sebagai ilustrasi, produsen sepatu membuat 2 model sepatu menggunakan 2 bahan yang berbeda. Komposisi model pertama terdiri dari 200 gr bahan pertama dan 150 gr bahan kedua. Sedangkan komposisi model kedua terdiri dari 180 gr bahan pertama dan 170 gr bahan kedua. Persediaan di gudang bahan pertama 72 kg dan bahan kedua 64 kg. Harga model pertama adalah Rp. 500.000,00 dan model kedua Rp. 400.000,00. Jika disimpulkan/disederhanakan dalam bentuk tabel menjadi berikut:

model matematika program linear 

Dengan peubah dari jumlah optimal model 1 adalah x dan model 2 adalah y, dan hasil penjualan optimal adalah f(x, y) = 500.000x + 400.000y. Dengan syarat:
  • Jumlah maksimal bahan 1 adalah 72.000 gr, maka 200x + 180y ≤ 72.000.
  • Jumlah maksimal bahan 2 adalah 64.000 gr, maka 150x + 170y ≤ 64.000
  • Masing-masing model harus terbuat.
Model matematika untuk mendapat jumlah penjualan yang maksimum adalah:
Maksimum f(x, y) = 500.000x + 400.000y
Syarat:
  • 200x + 180y ≤ 72.000
  • 150x + 170y ≤ 64.000
  • x ≥ 0
  • y ≥ 0
Nilai Optimum Fungsi Objektif
Fungsi objektif merupakan fungsi linear dan batasan-batasan pertidaksamaan linear yang memiliki himpunan penyelesaian. Himpunan penyelesaian yang ada merupakan titik-titik dalam diagram cartesius yang jika koordinatnya disubstitusikan kedalam fungsi linear dapat memenuhi persyaratan yang ditentukan.
Nilai optimum fungsi objektif dari suatu persoalan linear dapat ditentukan dengan metode grafik. Dengan melihat grafik dari fungsi objektif dan batasan-batasannya dapat ditentukan letak titik yang menjadi nilai optimum. Langkah-langkahnya sebagai berikut :
  • Menggambar himpunan penyelesaian dari semua batasan syarat yang ada di cartesius.
  • Menentukan titik-titik ekstrim yang merupakan perpotongan garis batasan dengan garis batasan yang lainnya. Titik-titik ekstrim tersebut merupakan himpunan penyelesaian dari batasannya dan memiliki kemungkinan besar membuat fungsi menjadi optimum.
  • Menyelidiki nilai optimum fungsi objektif dengan dua acara yaitu:
  • Menggunakan garis selidik
  • Membandingkan nilai fungsi objektif tiap titik ekstrim 
     
↪ Menggunakan Garis Selidik
Garis selidik diperoleh dari fungsi objektif f(x, y) = ax + by dimana garis selidiknya adalah
ax + by = Z.
Nilai Z diberikan sembarang nilai. Garis ini dibuat setelah grafik himpunan penyelesaian pertidaksamaan dibuat. Garis selidik awal dibuat di area himpunan penyelesaian awal. Kemudian dibuat garis-garis yang sejajar dengan garis selidik awal. Berikut pedoman untuk mempermudah penyelidikian nilai fungsi optimum:
Cara 1 (syarat a > 0)
  • Jika maksimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di kiri garis tersebut. Titik yang dilalui garis tersebut adalah titik maksimum.
  • Jika minimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di kanan garis tersebut. Titik yang dilalui garis tersebut adalah titik minimum.
garis selidik
Cara 2 (syarat b > 0)
  • Jika maksimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di bawah garis tersebut. Titik yang dilalui garis tersebut adalah titik maksimum.
  • Jika minimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di atas garis tersebut. Titik yang dilalui garis tersebut adalah titik minimum.
cara membuat garis selidik fungsi


Untuk nilai a < 0 dan b < 0 berlaku kebalikan dari kedua cara yang dijelaskan di atas.
↪ Membandingkan Nilai Fungsi Tiap Titik Ekstrim
Menyelidiki nilai optimum dari fungsi objektif juga dapat dilakukan dengan terlebih dahulu menentukan titik-titik potong dari garis-garis batas yang ada. Titik-titip potong tersebut merupakan nilai ekstrim yang berpotensi memiliki nilai maksimum di salah satu titiknya.
Berdasarkan titik-titik tersebut ditentukan nilai masing-masing fungsinya, kemudian dibandingkan. Nilai terbesar merupakan nilai maksimum dan nilai terkecil merupakan nilai minimum.

Contoh Soal
1. Tentukan nilai minimum f(x, y) = 9x + y pada daerah yang dibatasi oleh 2 ≤ x ≤ 6, dan 0 ≤ y ≤ 8 serta x + y ≤ 7.
pembahasan:
  • Langkah 1: menggambar grafiknya
contoh soal program linear
  • Langkah 2: menentukan titik ekstrim
Dari gambar, ada 4 titik ekstrim, yaitu: A, B, C, D dan himpunan penyelesaiannya ada di area yang diarsir.
  • Langkah 3: menyelidiki nilai optimum
Dari grafik diketahui titik A dan B memiliki y = 0, sehingga kemungkinan menjadi nilai minimum. Kedua titik disubstitusikan kedalam f(x, y) = 9x + y untuk dibandingkan.
menyelidiki nilai optimum
Dengan membandingkan, disimpulkan titik A memiliki nilai minimum 18
2. Tentukan dimana nilai maksimum fungsi f(x, y) = 4x + 5y yang akan dicapai pada pada grafik ini!
pembahasan soal 
pembahasan:
Titik ekstrim pada gambar adalah:
  • A tidak mungkin maksimum karena titik paling kiri.
  • B(3, 6)
  • C(8, 2)
  • D(8, 0)
Nilai tiap titik ekstrim adalah:
  • B(3, 6) \longrightarrow f(3, 6) = 4(3) + 5(6) = 42
  • C(8, 2) \longrightarrow f(8, 2) = 4(8) + 5(2) = 42
  • D(8, 0) \longrightarrow f(8, 0) = 4(8) + 5(0) = 32
Sehingga nilai maksimum ada pada titik yang melalui garis BC dengan nilai maksimum 42.

sumber: https://www.studiobelajar.com/program-linear/